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A B S T R A C T

After decades of research, the influence of prenatal testosterone on brain lateralization is still elusive, whereas
the influence of pubertal testosterone on functional brain lateralization has not been investigated, although there
is increasing evidence that testosterone affects the brain in puberty. We performed a longitudinal study, in-
vestigating the relationship between prenatal testosterone concentrations in amniotic fluid, pubertal testosterone
concentrations in saliva, and brain lateralization (measured with functional Transcranial Doppler ultra-
sonography (fTCD)) of the Mental Rotation, Chimeric Faces and Word Generation tasks. Thirty boys and 30 girls
participated in this study at the age of 15 years. For boys, we found a significant interaction effect between
prenatal and pubertal testosterone on lateralization of Mental Rotation and Chimeric Faces. In the boys with low
prenatal testosterone levels, pubertal testosterone was positively related to the strength of lateralization in the
right hemisphere, while in the boys with high prenatal testosterone levels, pubertal testosterone was negatively
related to the strength of lateralization. For Word Generation, pubertal testosterone was negatively related to the
strength of lateralization in the left hemisphere in boys. For girls, we did not find any significant effects, possibly
because their pubertal testosterone levels were in many cases below quantification limit. To conclude, prenatal
and pubertal testosterone affect lateralization in a task-specific way. Our findings cannot be explained by simple
models of prenatal testosterone affecting brain lateralization in a similar way for all tasks. We discuss alternative
models involving age dependent effects of testosterone, with a role for androgen receptor distribution and ef-
ficiency.

1. Introduction

Brain lateralization is the functional specialization of the brain, with
some functions performed primarily by the left hemisphere, and other
functions by the right hemisphere. This is a basic organizational prin-
ciple of the brain throughout the animal kingdom, with important
consequences for behavior, perception and cognitive processes. In hu-
mans, there is considerable individual variation in how functions are
divided over the two hemispheres (Pujol et al., 1999; Lust et al., 2011a),
but the developmental trajectory of these differences in lateralization
remains elusive. Prenatal testosterone has been put forward as a major
causal factor in the development of brain lateralization, inspired by sex
differences in lateralization of brain and behavior (Springer and
Deutsch, 1997, but see Pfannkuche et al., 2009), in combination with
the fact that prenatal exposure to testosterone plays a major role in

sexual differentiation of the brain (Arnold and Breedlove, 1985; Cooke
et al., 1998). However, more recently it has become evident that pub-
erty is also an important developmental phase in which testosterone
can have organizational effects on brain and behavior (Blakemore et al.,
2010; Peper and Dahl, 2013; Romeo, 2003; Sisk and Zehr, 2005). This
aspect has been neglected in studies on brain lateralization.

There are three theories on the effect of prenatal testosterone on
brain lateralization: the Sexual Differentiation theory is based on ob-
served differences in lateralization between males and females, but
makes no assumptions on the underlying mechanisms (Hines and
Shipley, 1984). Males are more often left-handed (Annett, 1985), which
led to the hypothesis that males are more asymmetrically lateralized,
although the effect size is small. The Geschwind and Galaburda theory
proposes that prenatal testosterone delays growth of brain areas in the
left hemisphere, resulting in compensatory growth of the homologue
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regions in the right hemisphere (Geschwind and Galaburda, 1985). This
would result in a weaker lateralization of functions lateralized in the
left hemisphere, and a stronger lateralization of functions lateralized in
the right hemisphere. The Corpus Callosum theory is based on corre-
lational evidence in males, suggesting that prenatal testosterone in-
duces pruning of the corpus callosum (Witelson and Nowakowski,
1991), which is the main connection between the two hemispheres.
Prenatal testosterone would reduce crosstalk between the hemispheres,
and would thereby promote execution of a function within one hemi-
sphere. Chura et al. (2010) measured prenatal testosterone levels in
amniotic fluid in humans, and found that prenatal testosterone is po-
sitively related to rightward asymmetry of the isthmus of the corpus
callosum at age 8–11 years. Interestingly, the isthmus projects to brain
regions involved in lateralized functions such as language, emotion
recognition and visuospatial cognition (Chura et al., 2010).

After decades of research, the role of prenatal testosterone in the
development of brain lateralization is still unclear (see review
(Pfannkuche et al., 2009)). This may partly be caused by the fact that
most studies estimate individual prenatal testosterone levels indirectly,
for example by the 2D:4D finger length ratio (Cohen-Bendahan et al.,
2005; for a critique see Beking et al., 2017). In the present study,
prenatal testosterone is measured in amniotic fluid, via amniocentesis.
Amniocentesis is the most direct way to measure prenatal testosterone
exposure in humans. It is performed between week 15–18 of gestation,
this is around the time that the maximum sex difference in testosterone
levels occurs (Abramovich, 1974), and during the sensitive period
(week 8–24 of gestation) in which prenatal hormones influence sexual
differentiation of the brain (Knickmeyer and Baron-Cohen, 2006).
There are only three studies that have measured amniotic testosterone
levels to investigate its relation with functional lateralization later in
life. Grimshaw et al. (1995) found that prenatal testosterone is posi-
tively correlated with lateralization of language (dichotic listening) and
handedness in the left hemisphere in girls, and with lateralization of
recognizing emotions (dichotic listening of emotional affect) in the
right hemisphere in boys at age 10. Lust et al. (2010) found that pre-
natal testosterone is positively correlated with the strength of later-
alization of language (dichotic listening) in children aged 6 years. The
only study that measured lateralization at the brain level (with EEG),
instead of at the performance level, found no relation between prenatal
testosterone and lateralization of language and face processing in boys
of 7–10 years old (Mercure et al., 2009). Thus, the results are mixed.

The effects of hormones are classified into “organizing effects” and
“activating effects”, although the distinction between the effects is not
absolute (Arnold and Breedlove, 1985). Historically, organizing effects
were only considered to happen during the prenatal period, but there is
increasing evidence that hormones later in life could have organizing
effects on the brain as well, particularly during puberty (Blakemore
et al., 2010; Peper and Dahl, 2013; Romeo, 2003; Sisk and Zehr, 2005).
That is, just like prenatal testosterone, pubertal testosterone can have
structural and permanent effects on the brain, which can result in sex
differences (Giedd et al., 2012; Peper et al., 2011; Peper et al., 2009;
Perrin et al., 2008; Raznahan et al., 2010). Thus, if we extend the sexual
differentiation theory of Hines and Shipley (1984) to pubertal testos-
terone, we hypothesize that pubertal testosterone could also affect
brain lateralization.

Literature investigating the influence of pubertal hormones on la-
teralization is limited to menstrual cycle effects in girls, and finds that
estradiol and progesterone temporarily seem to reduce cerebral asym-
metries (e.g. Hausmann and Güntürkün 2000; Hjelmervik et al., 2012;
Hodgetts et al., 2015). These studies investigate the activating effects of
fluctuating hormone levels. Remarkably, there are no studies on the

relation between testosterone and lateralization in puberty, but studies
on testosterone exposure later in life are limited to adulthood. A recent
study found that higher testosterone levels in adulthood were accom-
panied by stronger lateralization of Word Generation measured with
functional Transcranial Doppler (the same technique that we used)
(Papadatou-Pastou and Martin, 2017), but a review of behavioural
studies on language lateralization did not find consistent relations with
adult testosterone levels (Papadatou-Pastou et al., 2016). There is
clearly a need for studies which (1) investigate the effects of both
prenatal and pubertal testosterone longitudinally, including the po-
tential interaction effect, (2) are based on direct measurements of the
hormone concentrations, (3) analyse lateralization directly at the brain
level.

In the current paper we present the results of a longitudinal study
analysing the relationships between prenatal and puberal testosterone
levels and brain lateralization of cognitive functions known to be la-
teralized. This study is a follow-up of the studies by Lust et al. (2010,
2011c), who found a positive correlation between prenatal testosterone
and language lateralization in children at 6 years of age. These children
have now reached the age of puberty, which allows us to study the
effects of pubertal testosterone as well. The other main difference with
the previous study is that we used a more direct measurement of brain
lateralization by means of functional Transcranial Doppler (fTCD) ul-
trasonography. FTCD measures the change blood flow velocity in the
left and the right hemisphere (in the middle cerebral arteries) during a
cognitive task. The fTCD technique is based on the assumption that
blood flow velocity increases after a hemisphere becomes more active.
With fTCD we assessed lateralization of three cognitive tasks, enabling
comparison of outcomes between different functions. Word Generation
and Mental Rotation are strongly lateralized tasks (respectively to the
left and right hemisphere), and validated for fTCD (Stroobant and
Vingerhoets, 2000). The Chimeric Faces task is often used as indirect
measure of lateralization of emotional face processing, in which sex
differences in lateralization have been found (e.g. Bourne, 2005). We
used fTCD with this task for the first time.

The three theories on the influence of prenatal testosterone on brain
lateralization differ in their predictions with regard to the effect on
brain lateralization, and support from the literature for these is incon-
sistent. Therefore, we refrain from clear hypotheses. We do expect that
pubertal testosterone has a similar effect to that of prenatal testos-
terone, as both affect sexual differentiation in brain and behavior, the
inspiration for assuming an effect of androgens on brain lateralization.
Moreover, based on the classic idea that prenatal testosterone sensitizes
the brain via increased receptor densities for testosterone later in life
(Nelson, 2005), we expect an interaction effect between prenatal and
pubertal testosterone on brain lateralization such that high prenatal
testosterone levels strengthen the effects of testosterone during puberty.

2. Method

2.1. Participants

Thirty boys (mean age M= 15.0, SD = 0.60, range [14.0–16.1])
and 30 girls (mean age M= 15.06, SD = 0.58, range [14.0–16.1])
were invited from an initial sample of 196 children born in 2000, whose
mothers underwent amniocentesis. Genotyping of the amniotic fluid
samples was performed, and all boys were XY and all girls XX. No
differences were observed in handedness between boys and girls.
Twenty-four boys and 22 girls were right-handed, 3 boys and 3 girls
were left-handed, and 3 boys and 5 girls were ambidexter (see para-
graph 2.4). Due to technical problems with the fTCD measurement two
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right-handed girls were excluded from the analysis. Ethical clearance
and consent was given.

2.2. Procedure

In the first part of the study, participants completed an online
anonymous questionnaire including questions to determine stage of
puberty and handedness. In the second part of the study, author TB
visited the home of the participant for the fTCD-measurement of brain
lateralization (duration 50 min), and the collection of saliva samples for
hormone analyses.

2.3. Puberty assessment

Boys indicated their stage of puberty by reporting one or more of the
following characteristics: presence of pubic hair, growth spurt, voice
cracking, deepening of voice, if they shaved their face, if they have had
a first ejaculation, or none of the above. These characteristics were
selected after consultation with a medical specialist in child and ado-
lescent endocrinology with experience in assessing pubertal stage (for
literature on pubertal stages in boys see Tanner, 1962). Pubertal stage is
calculated as the sum of these characteristics (1 point per characteristic;
M = 4.1, SD = 1.6). If the boys indicated that they had a first ejacu-
lation, they were asked to specify the date of their first one (days since
first ejaculation M = 503, SD = 489, range [0-1755]). Minimal varia-
tion in stage of puberty was expected in girls, with almost all girls
having reached the last stage at 15 years of age (Marshall and Tanner,
1969; and based on the advice of the medical specialist). Menarche
occurs at the end of puberty, and girls were asked to specify the date of
their first menstruation (days since first menstruation M= 652,
SD = 403, range [0–1959]).

2.4. Handedness

Handedness was determined with the Dutch translation of the
Edinburgh Handedness Inventory (Van Strien, 2002). The online
questionnaire consisted of 11 questions and scores ranged from −100
(“always with left hand”) to 100 (“always with right hand”) per ques-
tion. Participants with a total score of> 800 were classified as right-
handed, <−800 as left-handed, and the rest as ambidexter (Van
Strien, 2002).

2.5. Prenatal testosterone (amniotic fluid)

Amniocentesis was performed in the 15–18th week of pregnancy at
the University Medical Center of Utrecht, the Netherlands. The reason
for amniocentesis was age of the mother (36–42 years). Testosterone
levels were measured in the amniotic fluid by radioimmunoassay. For
more information, including exclusion criteria for further analyses,

please see (Van de Beek et al., 2004).

2.6. Pubertal testosterone (saliva)

Testosterone levels were assessed in saliva. The participants were
asked to produce 4 ml of saliva via passive drooling through a poly-
propylene straw (Durdiaková et al., 2013). On the test day two samples
were taken (sample 1 Mtime = 14:00, sample 2Mtime = 14:30, range
[12:15–17:20]). Two weeks after the visit two more samples were
taken. However, we only used sample 1 for our analysis, as the corre-
lation between the four samples was high (between sample 1 and 2:
r = 0.98; between sample 1 and 3: r= 0.87; and between sample 1 and
4: r = 0.84; all p < 0.001), and because we were primarily interested
in the pubertal testosterone levels close to the moment the lateraliza-
tion index was determined.

Testosterone in saliva was analyzed by isotope dilution liquid
chromatography tandem mass spectrometry (LC–MS/MS). Imprecision
at 0.13 nmol/L was 3.1% (repeatedly measured at 14 days). Lower limit
of quantification for testosterone was 0.01 nmol/L. Twenty out of 30
girls had pubertal testosterone levels below the lower limit of quanti-
fication. Testosterone levels were within the range of the reference
values measured by Bui et al. (2013). Prenatal and pubertal testos-
terone levels differed in magnitude because they were assessed in dif-
ferent types of samples (amniotic fluid or saliva) and with a different
technique (radioimmunoassay or LC–MS/MS).

2.7. Functional transcranial doppler (fTCD)

Brain lateralization was measured with functional Transcranial
Doppler ultrasonography (fTCD). Using a DWL Doppler Box
(Compumedics Germany GmbH) and QL 3.0 software, we measured the
blood flow velocity in the left and in the right middle cerebral arteries
simultaneously during a cognitive task and during baseline. The middle
cerebral arteries supply most of the cortex of blood. FTCD is based on
the assumption that greater activity in a hemisphere during a task re-
quests larger blood flow in the corresponding middle cerebral artery.
For example, if the right hemisphere is dominant for Mental Rotation,
the blood flow velocity will increase more in the right than in the left
hemisphere compared to the baseline. Results of this technique corre-
late very well with fMRI results (Deppe et al., 2000; Jansen et al.,
2004). A cap with 2 probes (2-Mhz transducers) is placed on the head of
a participant, on the left and the right temporal bone window. Both
probes emit a high-pitched sound signal that reflects off the blood cells
in the left and right middle cerebral artery. The faster the blood flows,
the bigger the Doppler shift of the reflected signal. For more informa-
tion on the fTCD procedure see (Bishop et al., 2010; Deppe et al., 2004).

Fig. 1. Task design.
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2.8. Tasks

Brain lateralization was measured during the performance of Mental
Rotation, Chimeric Faces, and Word Generation tasks. The tasks were
performed on a laptop (HP Pro Book), and experimental paradigms
controlled by E-prime 22. The task order was randomly assigned. Every
task consisted of 12 trials, and started with one (Chimeric Faces and
Word Generation) or two (Mental Rotation) practice trials. Every trial
lasted 52.5s, consisting of a baseline (25s) and an active task (27.5s),
see Fig. 1. The baseline was always a white screen. During Mental
Rotation and Chimeric Faces, the participants were instructed to re-
spond with a press on a button box with 2 buttons with both index
fingers simultaneously, to minimize lateralized activation in the motor
cortex.

2.8.1. Mental rotation
During the Mental Rotation task, a pair of 3D-figures was shown to

the participant for 4 s (see Fig. A.1 in Appendix B for an example). The
participant was instructed to decide whether the figures are identical or
mirrored (50% chance). Next, a white screen was shown for 1.5s,
during which the participant had to respond by pressing the upper
button in case both figures were identical, and the lower button in case
the figures were mirrored. Every trial consisted of 5 stimulus pair-re-
sponse sequels. The stimuli used were similar to those used in
(Vandenberg and Kuse, 1978).

2.8.2. Word generation
The participant was instructed to whisper as many words as possible

that begin with a given letter. The participant was instructed not to use
numbers, non-existing words, names and “compound words” starting
with a previous word. The task started with one practice trial (letter: S).
After the baseline period, a single letter was shown for 27.5s, after
which 12 trials followed (letters: J, T, N, B, E, O, W, R, M, P, F, K).

2.8.3. Chimeric faces
During the Chimeric Faces tasks a pair of two identical but mirrored

faces was shown to the participant in vertical orientation, with an
emotion (happy or angry) expressed on the left or right side of the face,
and the other half showing a neutral expression (see Fig. A.2 in
Appendix B). The participant was instructed to indicate which face
looked more emotional. First, the stimulus pair was shown for 4s. Next,
a white screen was shown for 1.5 s during which the participant had to
respond by pressing the upper button if he/she thought the upper face
looked more emotional, and the lower button for the lower face. Every
trial consisted of 5 different stimulus pairs with the same emotion. The
trials were randomized for happy and angry emotion (each 50%), and
for position (upper/lower, each 50%). For more information on the
Chimeric Faces stimuli, and a link to the stimulus set we created, see
Text A.1 in Appendix A.

2.9. Measurement of laterality

The Doppler signal (measured with fTCD) was processed with the
dopOSCCI 2 software package (Badcock et al., 2012) for Matlab
(R2011b). In dopOSCCI we chose the following settings: (1) epochs
with 30% lower or higher blood flow velocity than average were ex-
cluded, (2) epochs with a left-right blood flow velocity difference of
more than 20% relative to the normalized signal were excluded, (3)
data was normalized using an epoch to epoch method. The baseline
period for the analysis was fixed at minus 15 s to onset of the stimulus.

The period of interest was set to 7–27.5 s after onset of the stimulus.
Participants with less than 7 accepted epochs were excluded from the
analysis: 1 girl was excluded for the Mental Rotation task (n = 57), 1
girl and 1 boy for the Chimeric Faces task (n = 56), and 1 boy for the
Word Generation task (n = 57).

The lateralization index (LI) was calculated from the difference in
blood flow between task and preceding baseline for the left (ΔL) and
right hemisphere (ΔR) as follows: LI = (ΔL) − (ΔR). Thus, a positive
lateralization index indicates lateralization to the left hemisphere, and a
negative index lateralization to the right hemisphere. As the later-
alization index derived from fTCD is a relative measure, we cannot say
if a stronger positive LI means that the left hemisphere is more acti-
vated, or that the right hemisphere is less activated compared to
baseline, or both, and vice versa.

In published fTCD studies, the LI is based on a period of only 2 s
around the maximum difference between left and right activation.
Using the AVERAGE software available at that time (Deppe et al.,
1997), this was the only way to determine the LI. With the recent do-
pOSCCI software the LI can be calculated over the entire period of in-
terest. We chose to do this, as we are interested in the LI during the
entire task period. Moreover, the latency of the maximum difference
varied greatly over the entire task period, and could even reverse in
sign, making the LI based on only 2 s around the maximum a less re-
liable measure. The standard deviation of the LI is smaller when the
entire LI is used, and fewer epochs were rejected. Therefore, the results
based on the LI of the entire period of interest are presented in this
article. To enable comparison with other fTCD studies, the outcomes
based on the maximum difference are presented in Table A.1 in
Appendix B.

2.10. Statistical analysis

SPSS 22 was used for the statistical analyses. An independent
samples t-test was performed to test sex differences for all variables.
Prenatal and pubertal testosterone were not normally distributed,
therefore a Mann-Whitney U Test for these variables was applied.
Normally, in fTCD studies, the average LI over all trials is used in the
analysis. However, the dopOSCCI software provided us with the LI of
every trial, and we used a linear mixed model to control for the var-
iance between the trials of the same person (covariance type: Scaled
Identity; Sum of Squares Type III; Estimations based on the Maximum
Likelihood). First, an analysis with only prenatal testosterone and sex as
fixed effects, and subject as random effect, was performed including all
participants. Secondly, since the overlap in pubertal testosterone levels
between boys and girls turned out to be minimal, we performed further
analyses for each sex separately.

We calculated the correlation between duration of puberty (pubertal
stage for boys, and days since first menstruation for girls) and pubertal
testosterone. To control for the duration of exposure to elevated pub-
ertal testosterone levels in boys, we added pubertal as a covariate to the
model. Based on Akaike’s criterion (AIC) the model with pubertal stage
was better than the model without it. However, to be able to also di-
rectly compare the outcomes between boys and girls, an additional
analysis was performed for boys without pubertal stage as a covariate.
Visual inspection revealed that the residuals of all models were nor-
mally distributed. In addition, to control for the effect of time of day of
saliva collection on pubertal testosterone levels, all analyses were
performed again with time of day added as a covariate. The results did
not change qualitatively and based on the AIC the model was better
without time of sampling as a covariate. Therefore, the results will be
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presented without time of saliva collection as a covariate. Also, all
analyses were performed on the right-handed participants only (see
Table A.2 in Appendix B), revealing qualitatively the same results.

To interpret the interaction effects of prenatal and pubertal testos-
terone on the Mental Rotation and Chimeric Faces tasks, the model was
run again, but this time with the standardized z-scores of all in-
dependent variables. Because only the interaction effects remained
significant, we focused on these. To visualize the interaction between
prenatal and pubertal testosterone, the boys were divided in a “low
prenatal testosterone group” and a “high prenatal testosterone group”
based on the median split, and the relation between pubertal testos-
terone levels and brain lateralization was graphically depicted for these
two groups. Additional analyses (linear mixed model) were performed
to assess the effect of pubertal testosterone and pubertal stage on la-
teralization for both prenatal groups. The Beta-values of all effects were
calculated as the B-values of the mixed model with the standardized z-
scores of all independent variables.

3. Results

3.1. Prenatal and pubertal testosterone

Prenatal testosterone concentrations in amniotic fluid were sig-
nificantly higher in boys than in girls (Table 1), with some overlap (see
Fig. A.3 in Appendix B). Boys also had significantly higher concentra-
tions of testosterone in saliva during puberty (Table 1), but here the
overlap between the sexes was minimal with 20 out of 30 girls having
pubertal testosterone levels under the detection threshold of 0.01 nmol/
L (see Fig. A.3 in Appendix B). The correlation between prenatal and
pubertal testosterone levels was not significant (boys: Spearman’s
r = 0.15; p = 0.440; girls: Spearman’s r= −0.14; p= 0.466; see Fig.
A.3 in Appendix B). For boys, the correlation between pubertal testos-
terone and pubertal stage was significant (Spearman’s r = 0.50;
p = 0.005; see Fig. A.4 in Appendix B). For girls, there was no corre-
lation between days since first menstruation and pubertal testosterone
level (Pearson’s r =−0.07, p = 0.710).

3.2. Lateralization of the mental rotation, chimeric faces and word
generation tasks

Both the Mental Rotation task and the Chimeric Faces task were
significantly lateralized to the right hemisphere (Mental Rotation:
M= −1.51, SD = 1.87; Chimeric Faces: M =−1.90; SD = 1.85), and
the Word Generation task to the left hemisphere (M = 1.20;
SD = 1.84). The average activation during the tasks, compared to
baseline, is shown in the Grand Averages (see Fig. A.5 in Appendix B).
Fifty-eight percent of all participants had a “typical pattern” of later-
alization with Mental Rotation and Chimeric Faces lateralized to the
right hemisphere, and Word Generation to the left hemisphere. For
more information on the distribution of participants over the pattern of
lateralization across all tasks, see Table A.3 in Appendix B. The average
lateralization index per sex is shown in Table 1. Boys were significantly
stronger lateralized to the right hemisphere for the Mental Rotation task
than girls, but there is no sex difference for the other tasks.

Table 1
Mean (M) and standard deviation (SD) of all variables, for boys and girls.

Boys Girls sex-effect

M SD M SD test value* p

Age (years) 15.0 0.6 15.0 0.6 0.27 0.785
Prenatal testosterone

(nmol/L)
1.50 0.55 0.71 0.39 6.34 <0.001

Pubertal testosterone
(nmol/L)

0.12 0.07 0.015 0.011 7.32 <0.001

LI Mental Rotation −1.97 1.74 −1.00 1.91 −2.01 0.049
LI Chimeric Faces −2.14 1.85 −1.63 1.86 −1.03 0.308
LI Word Generation 1.32 1.65 1.08 2.04 0.50 0.622

*Significance (p) of the sex-effect was tested with a Mann-Whitney U test for prenatal and
pubertal testosterone and a t-test (df = 56) for the other variables.

Table 2
Results of the linear mixed model analyses for the effects of prenatal testosterone (T) and sex for all participants, for the effects of prenatal and pubertal testosterone for the girls, and for
the effects of prenatal and pubertal testosterone with and without pubertal stage as a covariate for the boys.
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3.3. The effect of prenatal testosterone and sex on lateralization

The model with only prenatal testosterone and sex revealed no
significant effects of prenatal testosterone, sex, or the interaction, on
the lateralization index of all tasks (see Table 2–All participants).

3.4. The effect of prenatal and pubertal testosterone on lateralization

The model with prenatal testosterone, pubertal testosterone, and
their interaction, was analyzed for each sex separately.

For girls, there were no significant effects of prenatal testosterone,
pubertal testosterone, or the interaction between these two on lateralization
of Mental Rotation, Chimeric Faces, or Word Generation (Table 2 – Girls).
For boys, the model was first performed without pubertal stage as predictor
(Table 2 – Boys), to enable comparison with girls. This revealed that in boys
all predictors significantly affected lateralization of Mental Rotation. Since
the model with pubertal stage as a covariate yielded a better AIC, we focus
on the outcomes of this model (Table 2 – Boys incl. pubertal stage). For
Mental Rotation and Chimeric Faces all effects of prenatal and pubertal
testosterone are now significant, while for Word Generation only pubertal
testosterone significantly affects lateralization. For all tasks, pubertal stage
is positively associated with leftward asymmetry.

For Mental Rotation and Chimeric Faces, both being right-lateralized
tasks, there is a significant interaction effect between prenatal and pub-
ertal testosterone, making it difficult to interpret the main effects. We
therefore performed the same analysis with standardized independent
variables, and only the interaction effects remained highly significant for
Mental Rotation (prenatal testosterone p = 0.440, pubertal testosterone
p = 0.833, interaction p < 0.001, pubertal stage p = 0.058) and
Chimeric Faces (prenatal testosterone p = 0.168, pubertal testosterone
p = 0.742, interaction p = 0.028, pubertal stage p = 0.049).

To visualize the interaction effects, the boys were divided in a “low
prenatal testosterone group” and a “high prenatal testosterone group”,
see Fig. 2A–C. For the low prenatal testosterone group, pubertal tes-
tosterone relates to stronger lateralization towards the right hemisphere
for Mental Rotation (B = −11.69, SE= 4.81, p = 0.028), while for the
high prenatal testosterone group, pubertal testosterone relates to
weaker lateralization towards the right hemisphere (B= 14.36,
SE = 6.68, p = 0.048; Fig. 2A). Pubertal stage has no significant effect
on lateralization of Mental Rotation in the low (B = 0.19, SE = 0.27,
p = 0.714) or high prenatal testosterone group (B = 0.33, SE = 0.27,
p = 0.242). For the Chimeric Faces task, the influence of pubertal tes-
tosterone on lateralization in both groups is similar to the Mental Ro-
tation task, but not significant (low prenatal testosterone group:
B =−4.46, SE= 6.47, p = 0.501; high prenatal testosterone group:
B = 9.57, SE = 7.58, p = 0.227; Fig. 2B). Again, pubertal stage has no
significant effect on brain lateralization for both groups (low prenatal
testosterone: B = 0.11, SE = 0.35, p = 0.754; high prenatal testos-
terone: B = 0.48, SE = 0.30, p = 0.133).

For the Word Generation task, being a left lateralized function, but
there is a significant negative relation between pubertal testosterone and
the lateralization index: more pubertal testosterone is related to weaker
lateralization index. To be able to compare the outcomes of Word
Generation to Mental Rotation and Chimeric Faces, we also depicted and
assessed the effects of pubertal testosterone and pubertal stage for both
prenatal groups separately (Fig. 2C). The main effect of pubertal testos-
terone seems to be driven by the low prenatal group. For the low prenatal
group, pubertal testosterone is related to weaker lateralization to the left
hemisphere (or: stronger to the right hemisphere) (B=−18.00,
SE=5.90, p = 0.009), and pubertal stage has a reversed effect (B=0.81,
SE=0.32, p = 0.025). For the high prenatal group, there is no significant
effect of pubertal testosterone (B=−5.49, SE=5.95, p = 0.371) or
pubertal stage (B=0.37, SE=0.24, p = 0.137).

4. Discussion

This is the first study combining prenatal amniotic fluid testosterone
levels with pubertal saliva testosterone levels in the same participants.
An important finding of our study is that testosterone exposure is re-
lated to brain lateralization of cognitive tasks in boys at 15 years of age,
but only if prenatal and pubertal levels were both taken into account.
The effects of testosterone were task dependent. Because testosterone

Fig. 2. The effect of pubertal testosterone on the lateralization index for the low (grey
dots, grey line) and high prenatal testosterone group (black diamonds, black line). A.
Mental Rotation; B. Chimeric Faces; C. Word Generation.
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levels increase in puberty in boys (Ober et al., 2008; this study), we
added pubertal stage as a covariate to control for duration of exposure
to elevated testosterone, which increased the explanatory power of the
statistical model for boys. Pubertal stage increased leftward asymmetry
for all tasks. The fact that in girls testosterone concentrations, especially
in puberty, were very low and showing little variation may account for
the non-significant effects for this sex and restricts interpretation.
Nonetheless, we believe it is valuable to include the analyses for girls,
as their low testosterone levels provide biologically relevant informa-
tion. The results did not change when time of day of saliva collection
was included, or when the analyses were restricted to right-handers.

In the analysis with only prenatal testosterone and sex as effects, we
did not find any significant effects, which is in accordance with the study
of Mercure et al. (2009)− the only other study that investigated the effect
of prenatal testosterone in amniotic fluid on lateralization measured at the
brain level. It is in contrast to the amniotic fluid studies using behavioural
methods to assess lateralization (Grimshaw et al., 1995; Lust et al., 2010).
These amniotic fluid studies were all performed in pre-pubertal children.
There is one study investigating the effect of perinatal testosterone levels
(measured in umbilical cord blood at birth) on lateralization measured
with fTCD at 22 years of age (Hollier et al., 2014). In this study, no main
effect of perinatal testosterone on lateralization of Word Generation or
Visuospatial Memory was found, which is in line with our study when the
analysis was performed without the pubertal testosterone levels in the
model. In the following discussion we will focus on the outcomes of the
model with the pubertal testosterone levels included. This will mainly be
based on the outcomes for boys, as for girls we did not find significant
effects of testosterone on lateralization.

4.1. Mental rotation and chimeric faces tasks

For the two right hemispheric tasks, the Mental Rotation and the
Chimeric Faces task, we found a highly significant interaction effect
between prenatal and pubertal testosterone in boys. We hypothesized
that prenatal testosterone would strengthen the effect of pubertal tes-
tosterone. However, the interaction effect cannot simply be explained
by prenatal testosterone upregulating the sensitivity for pubertal tes-
tosterone (Nelson, 2005). In the boys with low prenatal testosterone
levels, pubertal testosterone increased the strength of lateralization for
these two tasks, while in the high prenatal testosterone group, pubertal
testosterone decreased the strength of lateralization. Analysis per pre-
natal group revealed that these effects were significant for the Mental
Rotation task, but not for the Chimeric Faces task. Nevertheless, the
direction and magnitude of the effect sizes is comparable between both
tasks.

To understand this interaction effect, it is important to realize that
an effect of hormone exposure on brain lateralization requires an
asymmetrical distribution or efficiency of the relevant hormone re-
ceptors, or of subsequent downstream processes. Based on our data, we
hypothesize that the distribution of androgen receptors (AR) differs
between both prenatal testosterone groups, resulting in a different ef-
fect of pubertal testosterone on brain lateralization. The idea that AR
distribution may be lateralized in the human brain is supported by the
fact that in the brain of fetal rhesus monkeys AR distribution is later-
alized (Sholl and Kim 1990). Interestingly, this is only the case for
males and not for females, and the direction of lateralization depends
on the brain area: more androgen receptors in the right frontal lobe,
and in the left temporal lobe. Unfortunately, there is − to the best of
our knowledge − no literature describing the AR distribution in the
human brain. If the AR distribution is indeed lateralized in the brain
areas involved in Mental Rotation and Chimeric Faces, and in what
direction, remains to be investigated.

Besides our hypothesis that the AR distribution plays a role in the
development of functional brain lateralization, the literature points also
to a role for AR efficiency. Raznahan et al. (2010) investigated the re-
lation between the efficiency of the androgen receptor and grey matter
thickness in the brain. Remarkably they found a specific interaction
effect with age in the intraparietal sulcus and the inferior parietal lo-
bule, areas especially involved in Mental Rotation: before puberty the
cortex is thinner in the high efficient androgen receptor group than in
the low efficient AR group, but after puberty the difference is reversed
and this effect was only found for boys, not for girls. Importantly, this
interaction effect was especially pronounced in the right hemisphere. If
we link this interaction effect to the interaction effect we found for
Mental Rotation and Chimeric Faces in our male sample, we can hy-
pothesize that our low prenatal testosterone group may have a more
efficient androgen receptor type (explaining a weaker lateralization
before and a stronger lateralization after puberty) and that our high
prenatal testosterone group might have a less efficient androgen re-
ceptor type (explaining the opposite pattern). Indeed there is data that
testosterone levels are lower in participants with the higher efficient
androgen receptor, probably as a result of negative feedback of the
androgen receptor on testosterone production, both in adults and pre-
natally (Crabbe et al., 2007; Krithivas et al., 1999; Manning et al., 2003;
Stanworth et al., 2008; but see Eisenegger et al., 2016), supporting our
explanation.

4.2. Word generation task

For the Word Generation task, pubertal testosterone decreased the
strength of lateralization in boys. We did not find an effect of prenatal
testosterone, or an interaction effect between prenatal and pubertal
testosterone. This is in contrast to our hypothesis that testosterone
would strengthen lateralization both prenatally and in puberty, for
example via pruning of the corpus callosum, as postulated by Witelson
and Nowakowski (1991). However, Chavarria et al. (2014) reported
that pubertal testosterone increases the thickness of the corpus cal-
losum by increasing the myelin sheet and the thickness of the axons.
This would result in more capacity for communication between the
hemispheres, and therefore decreased lateralization like we found for
Word Generation. Thus, this may explain the main effect of pubertal
testosterone in our data.

There is no literature on the effect of pubertal testosterone on later-
alization of language, but there are some studies investigating the effect of
salivary testosterone levels in adulthood. In contrast to our study,
Papadatou-Pastou and Martin (2017) found that adult testosterone in-
creased the strength of lateralization of Word Generation measured with
fTCD. However, the majority of the participants were left-handed, and there
is a relation between lateralization for handedness and language (Knecht
et al., 2000), possibly confounding their results. We had too few lefthanders
to properly analyse the effect of handedness in this respect. There are four
other studies investigating the effect of adult salivary testosterone on lan-
guage lateralization measured with dichotic listening, finding that testos-
terone levels differed between groups based on handedness or ear ad-
vantage (Gadea et al., 2003; Moffat and Hampson, 1996; Moffat and
Hampson, 2000; Papadatou-Pastou et al., 2016). However, no direct rela-
tion between adult salivary testosterone levels and language lateralization
was found in these studies, suggesting that testosterone exposure in puberty
− and not in adulthood − has some organizing effects on the brain.

Based on the literature and the previous study of Lust et al. (2010),
we did not only expect an effect of pubertal testosterone on language
lateralization, but also an effect of prenatal testosterone. Although the
effect of prenatal testosterone (or the interaction) was not significant in
our study, further analysis revealed that the boys with higher prenatal
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testosterone levels seem to be stronger lateralized to the left hemisphere
for Word Generation. This is in accordance with the finding that pre-
natal testosterone was positively related to left language lateralization
measured with dichotic listening in the same participants at 6 years of
age (Lust et al., 2010). Also, this outcome is consistent with the study of
Hollier et al. (2014), who did not find a main effect of perinatal tes-
tosterone on lateralization of Word Generation at age 22, but who did
find that typical left lateralization of language is more common in the
high perinatal testosterone group.

4.3. Task differences

There were clear differences in the relationships between prenatal
and pubertal testosterone and lateralization of the Word Generation
task versus the Mental Rotation and Chimeric Faces tasks. This could be
due to the fact that Word Generation task was the only left lateralized
task, and that testosterone exposure did not affect this hemisphere. It
could also be the case that the effect of testosterone on specifically the
language areas is different from other brain areas (e.g. Lombardo et al.,
2012; Raznahan et al., 2010), or that testosterone specifically affects
the neural fibres of the corpus callosum connecting language areas.
Chura et al. (2010) found a positive correlation between prenatal tes-
tosterone levels in amniotic fluid and rightward asymmetry of the
isthmus of the corpus callosum at age 8–11 years. The isthmus projects
to brain regions involved in language, emotion recognition and vi-
suospatial cognition (Chura et al., 2010), but how prenatal testosterone
affects the neural fibres of the isthmus that connect different functional
brain regions needs to be investigated. Moreover, the effect of pubertal
testosterone on functional subsections of the corpus callosum warrants
further study as well.

Most studies on human brain lateralization, especially functional
Transcranial Doppler (fTCD) studies, focus only on language tasks. In
our study we compared the outcomes on three cognitive tasks. The
Chimeric Faces task has not been assessed with fTCD before, and it
turned out that 87.5% of participants were right-lateralized for this task
(see Table A.3 in Appendix B). Further, the strongest effects of testos-
terone on lateralization were found for the Mental Rotation task. For all
tasks, we show that the average lateralization as assessed with fTCD is
in the expected direction. However, the individual differences in la-
teralization were much larger than previously assumed. Namely, the
typical lateralization pattern for the three tasks was found in 58% of
participants. The effects of sex hormones may depend on the specific
lateralization pattern (see for example the analyses by Lust et al.,
2011b). In the present study the number of participants was too small,
but future studies may pursue this. Our results clearly indicate that
using more tasks than only language tasks is useful.

4.4. Sex effects

Finally, there is a significant sex effect for lateralization on the
Mental Rotation task: boys were on average stronger lateralized to the
right hemisphere than girls. This is often assumed in the literature, but
to our knowledge, the present study demonstrates this for the first time

with lateralization measured at the brain level (instead of measuring
performance only). The sex effect we found for Mental Rotation sup-
ports the Sexual Differentiation theory (Hines and Shipley, 1984). Un-
fortunately, we could not distinguish the effect of pubertal testosterone
from the effect of sex in our sample, as there is a strong relation be-
tween testosterone and sex, and because testosterone levels showed
little variation in girls. It would be interesting to study girls with ele-
vated testosterone levels in puberty, to see if the effects we found in
boys are present in girls as well. Alternatively, the effect of testosterone
might not only be task-specific, but also sex-specific: Literature suggests
that pubertal testosterone has a different effect on the male and female
brain (Peper et al., 2011; Peper et al., 2009; Perrin et al., 2008;
Raznahan et al., 2010). Moreover, estradiol is an important metabolite
from testosterone, and the estrogen receptor might play a role here, and
this may depend on the task and sex. For example, pubertal testosterone
is positively related to grey matter density in boys, and estradiol is
negatively related to grey matter density in girls (Peper et al., 2009).
Finally, the estrogen receptor distribution is also lateralized in the
brain, and the direction differs between males and females (Diamond,
1991; Sandhu et al., 1986). We were not able to determine estradiol
levels in saliva as no mass spectrometric methods were available that
are capable of reliably measuring the low estradiol levels in saliva. Also,
sex hormones fluctuate during the menstrual cycle, and effects of
menstrual cycle phase on lateralization have been reported (e.g.
Hausmann and Güntürkün 2000; Hjelmervik et al., 2012; Hodgetts
et al., 2015). Unfortunately, menstrual cycle phase could not reliably be
estimated in our study, limiting the evaluation of these short term ef-
fects of sex hormones on lateralization. We recommend studying the
effect of elevated pubertal testosterone in girls, the effect of estradiol in
both sexes, and the role of the androgen and estrogen receptors in the
development of brain lateralization in future studies.

4.5. Conclusion

To conclude, this study shows that both prenatal and pubertal tes-
tosterone affect lateralization of several cognitive tasks. Strengths of
our study are that we measured prenatal testosterone directly in the
amniotic fluid and in saliva, thus combining prenatal and pubertal
testosterone levels in the same participants, while measuring later-
alization at the brain level. In addition, whereas the results of previous
studies are difficult to generalize because different tasks and methods
were used, we compared the effect of testosterone on lateralization of
three tasks within the same study and the same participants. For Word
Generation, pubertal testosterone decreases the strength of lateraliza-
tion in the left hemisphere, while for Mental Rotation and Chimeric
Faces there is an interaction between prenatal and pubertal testos-
terone. These results indicate that the effects of testosterone, both
prenatal and pubertal, are task dependent and specific for the brain
areas or networks involved. Both the influence of pubertal testosterone
and task specificity could explain the mixed findings in the literature,
and why the influence of prenatal testosterone on lateralization is still
elusive after decades of research. Our findings cannot be explained by
simple models in which the brain is affected by prenatal testosterone in
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a similar way for all tasks, as suggested by the Sexual Differentiation
theory (Hines and Shipley, 1984), the Geschwind and Galaburda theory
(1985), and the Corpus Callosum theory (Witelson and Nowakowski,
1991). We proposed an alternative potential mechanism, based on
asymmetrical distribution of androgen receptors, and their differential
efficiency in relation to differences in prenatal testosterone exposure.
Hopefully our findings will inspire others to pursue to examine our
hypothesis and to bring the intriguing field of sex and hormone de-
pendent lateralization forward.
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Appendix A

Text A.1. : Information on the Chimeric Faces stimuli

The Chimeric Faces task is an interesting task to study lateralization. Unfortunately, most Chimeric Faces stimulus sets have a low resolution, are
in black-and-white, not freely available, or have a limited amount of stimuli. There is need for a modern version of the Chimeric Faces stimuli, using
the improvements of current photo editing software. We created a new Chimeric Faces stimulus set based on the open accessible KDEF-stimulus set
(Lundqvist et al., 1998). Twenty pictures (10 males; 10 females) with the highest hit rate on happiness, and 20 pictures (10 males; 10 females) with
the highest hit rate on angriness were selected (based on (Goeleven et al., 2008) and contact with the authors), together with the corresponding
neutral pictures. The left half of the happy/angry picture was used, together with the right half of the neutral picture, to compose the new picture
(dimension 562 × 762). The color and size of both halves was equalized. We made sure eyes, nose and mouth of both halves were on the same
location. The transition between both halves was smoothed. Hairline and t-shirt of 1 picture were used. All stimulus design steps were executed in
Photoshop. Next, the new combined picture was mirrored to make a stimulus pair in E-Studio, in which we arranged the stimulus pair vertically in
the middle of the screen (see Fig. A.2 in Appendix B). We made sure participants were positioned in the middle of the screen, so the left side of the
stimulus would correspond to the left visual half field, and vice versa. The stimuli we created and used are accessible via www.KDEF.se.

Appendix B

Fig. A.1. Example of a Mental Rotation stimulus.
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Fig. A.2. Example of a Chimeric Faces stimulus.
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Fig. A.3. Correlation between prenatal and pubertal testosterone levels for boys (black dots, black line) and girls (grey diamonds, grey line).

Fig. A.4. The relation between pubertal testosterone level and pubertal stage in boys.

Fig. A.5. Grand averages of fTCD measure by task.
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Table A.1
Results of the linear mixed model analyses for the effects of prenatal testosterone (T) and sex for all participants, for the effects of prenatal and pubertal testosterone for the girls, and for
the effects of prenatal and pubertal testosterone with and without pubertal stage as a covariate for the boys. The lateralization index is based on the 2 s interval around the maximum
difference between left- and right activation during task relative to baseline.

Table A.2
Results of the linear mixed model analyses on only the right-handed participants for the effects of prenatal testosterone (T) and sex for all participants, for the effects of prenatal and
pubertal testosterone for the girls, and for the effects of prenatal and pubertal testosterone with and without pubertal stage as a covariate for the boys.

Table A.3
Lateralization patterns.

pattern MR CF WG % (n)

Expected pattern R R L 58% (32)
Right hemispheric R R R 18% (10)
Left hemispheric L L L 7% (4)
Mirrored pattern L L R 4% (2)
Other patterns L R R 5% (3)

L R L 5% (3)
R L L 2% (1)

right lateralized 79% (45) 87.5% (49) 26% (15)
left lateralized 21% (12) 12.5% (7) 74% (42)
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