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Most experimental studies of facial expression processing have used static stimuli
(photographs), yet facial expressions in daily life are generally dynamic. In its original
photographic format, the Karolinska Directed Emotional Faces (KDEF) has been
frequently utilized. In the current study, we validate a dynamic version of this database,
the KDEF-dyn. To this end, we applied animation between neutral and emotional
expressions (happy, sad, angry, fearful, disgusted, and surprised; 1,033-ms unfolding)
to 40 KDEF models, with morphing software. Ninety-six human observers categorized
the expressions of the resulting 240 video-clip stimuli, and automated face analysis
assessed the evidence for 6 expressions and 20 facial action units (AUs) at 31 intensities.
Low-level image properties (luminance, signal-to-noise ratio, etc.) and other purely
perceptual factors (e.g., size, unfolding speed) were controlled. Human recognition
performance (accuracy, efficiency, and confusions) patterns were consistent with prior
research using static and other dynamic expressions. Automated assessment of
expressions and AUs was sensitive to intensity manipulations. Significant correlations
emerged between human observers’ categorization and automated classification. The
KDEF-dyn database aims to provide a balance between experimental control and
ecological validity for research on emotional facial expression processing. The stimuli
and the validation data are available to the scientific community.

Keywords: facial expression, dynamic, action units, KDEF, FACET

INTRODUCTION

Research on facial expression processing (see reviews in Nelson and Russell, 2013; Calvo and
Nummenmaa, 2016) has generally utilized static faces as stimuli, obtained from standardized
databases such as the Pictures of Facial Affect (PoFA; Ekman and Friesen, 1976), the Karolinska
Directed Emotional Faces (KDEF; Lundqvist et al., 1998), the NimStim Stimulus Set (Tottenham
et al., 2002), the Radboud Faces Database (RaFD; Langner et al., 2010), FACES (Ebner et al., 2010)
and others (for a review and evaluation, see Cowie et al., 2005; Anitha et al., 2010; Sandbach et al.,
2012). Yet, in social encounters and face-to-face communication, facial expressions are generally
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dynamic. Further, research has shown that motion benefits
affect recognition (see Krumhuber et al., 2013; Calvo et al.,
2016; Wingenbach et al., 2016). Accordingly, it is important
to use dynamic stimuli for investigating recognition of facial
expressions.

A number of dynamic expression databases have been
developed, generally involving on-line video recordings of facial
activity, which represent a valuable advance (e.g., van der Schalk
et al., 2011; Banziger et al., 2012; Kaulard et al., 2012; Zhang et al.,
2014; O’Reilly et al., 2016; Wingenbach et al., 2016). Krumhuber
et al. (2017) have reviewed and discussed the major issues of 22
dynamic expression databases. In the current study, the proposal
of a new stimulus set (KDEF-dyn) aims to make a contribution
by taking two issues into account. First, the control of possible
perceptual confounds with non-expressive factors that may affect
expression recognition. They involve low-level image properties
of the stimuli, such as illumination and light source, size of the
face relative to the background, head-face orientation, or changes
in facial appearance like hair, make up, eyeglasses, jewelry, etc.
They may be difficult to control for in video-recordings of
spontaneous expressions. Yet, to unequivocally attribute emotion
recognition to facial expression per se, all the facial stimuli
across types of expressions must be comparable on these non-
expressive factors. Further, the control of such factors may be
critical for paradigms using neurophysiological (such as event-
related potentials, ERPs; see Naples et al., 2015) or eyetracking
(e.g., probability of first fixation in a particular face region, or
pupillometry; e.g., Calvo and Nummenmaa, 2011) measures,
which are particularly sensitive to physical image properties. To
this end, all the face stimuli in our KDEF-dyn set are standardized
in size, resolution, location, and frontal view, in addition to
multiple low-level image properties (luminance, contrast, etc.).

A second issue is concerned with the objective validation
of expressions and component facial actions across multiple
intensities. According to Valstar et al. (2015, 2017), many existing
benchmark databases show expressions at fixed intensities
(generally, the apex or maximum intensity) or do not support the
evaluation of intensity effects. Computational algorithms have
been developed to automatically detect Facial Action Coding
System (FACS) action units (AUs; Ekman et al., 2002), which
are anatomical changes in the facial morphology that can be
associated to specific emotions (e.g., AU12 or lip corner puller, to
happiness; or AU4, brow lowerer, to anger; etc.). Manual FACS-
coding by expert raters (van der Schalk et al., 2011; Banziger
et al., 2012), and also automated computation (Lucey et al., 2010;
Cosker et al., 2011; Mavadati et al., 2013; Zhang et al., 2014),
have been applied to dynamic expression databases only on the
apex. The estimation at multiple intensities is, however, required
because, in real life, expressions vary in intensity, which is often a
critical cue to interpret their meaning. Accordingly, we computed
the objective evidence of each of six basic expressions and also
the evidence of each of 20 AUs, across 31 intensities from neutral
(0% intensity) to emotional (100% intensity) in 3.33% intensity
steps. This adds to recent work (Calvo et al., 2016; Wingenbach
et al., 2016) regarding the role of intensity on the categorization
of dynamic expressions. This approach will be particularly useful
for expression discrimination studies, e.g., the lowest intensity

or threshold at which a particular emotion is recognized and
differentiated from others and from neutral faces.

With these two issues in mind, in the current study we
developed and validated a dynamic version (KDEF-dyn) of
the original KDEF database in static format (Lundqvist et al.,
1998), to extend research possibilities. The photographic KDEF
stimuli have been validated in large norming studies (Calvo
and Lundqvist, 2008; Goeleven et al., 2008), and widely used in
behavioral (e.g., Calvo et al., 2013; Sanchez et al., 2014; Gupta
et al., 2016) and neurophysiological (e.g., Bublatzky et al., 2014;
Calvo and Beltrán, 2014; Adamaszek et al., 2015) research. The
original KDEF database has been cited in over 1,980 published
articles, according to Google Scholar1 (accessed 18.09.2018). We
took advantage of this research on the static KDEF stimuli
to produce dynamic expressions of 40 different models, each
portraying the six basic emotions.

To develop dynamic expressions, we applied morphing
animation software (FantaMorph, v. 5.4.2; Abrosoft) to the
original KDEF photographs. For each encoder and emotion,
we created a 1,033-ms video-clip of 31 frames starting with
a neutral face and ending with a full-blown emotional face.
Thus, we tried to mimic real-life expressions and approximate
the average natural speed of emotional expression development
from a neutral face, since apex of facial expression is generally
reached within 1 s for basic emotions (Pollick et al., 2003;
Hoffmann et al., 2010). Admittedly, dynamic morphing creates
linear movement, which can make expressions appear as less
natural than on-line video recordings. Nevertheless, although
non-linear changes are generally judged as more natural than
linear motion, morphing does not necessarily compromise
naturalness (Cosker et al., 2010, 2015). In fact, dynamically
morphed facial expressions have often been employed in
prior research on facial emotion recognition, with behavioral
(Hoffmann et al., 2010; Fiorentini and Viviani, 2011; Recio
et al., 2013; Calvo et al., 2016) and neurophysiological (Popov
et al., 2013; Harris et al., 2014; Recio et al., 2014; Vrticka et al.,
2014) measures being sensitive to expression manipulations.
The morphing technique involves some advantages, such as
fine-grained control and standardization of expressive intensity,
unfolding speed, and duration. We chose this approach as a
balance between (reduced) ecological validity and (enhanced)
experimental control.

To validate the KDEF-dyn database, we followed two
approaches, each with several measures. First, we collected data
from human observers in an expression categorization task
including measures of (a) correct recognition responses, i.e.,
the probability that they coincided with the intended KDEF
expression, (b) reaction times indicating processing efficiency,
and (c) the probability of confusions across different expressions,
for each of the six basic emotions. Second, with Emotient FACET
software (v. 6.1.2667.3; iMotions), we performed automated
facial expression analyses (Bartlett and Whitehill, 2011; Olderbak
et al., 2014; Cohn and De la Torre, 2015; Girard et al.,
2015; Dente et al., 2017) of (a) the probability of each
expression to be detected, as a function of spatial maps of

1https://scholar.google.com/scholar?cites=93971208802805184&as_sdt=2005
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facial features, and also (b) the probability of each of 20
AUs to be activated, i.e., muscle movements, according to
FACS (Ekman and Friesen, 1978; Ekman et al., 2002). The
automated analyses of expressions and AUs were performed for
31 intensities (including the neutral baseline) of each emotional
facial expression (including apex), while the human recognition
measures were obtained for the maximum expressive intensity
only. These measures indicate to what extent each KDEF stimulus
is consistently categorized, the objective evidence for each
facial expression configuration, and the specific morphological
features.

The current KDEF-dyn database contributes to existing
databases of dynamic facial expression stimuli in several respects.
First, the combined validation approach (with both ‘subjective’
human categorization data and ‘objective’ automated assessment
data) provides researchers with empirical and theoretical criteria
to select stimuli depending on various dimensions (recognition
accuracy and efficiency, susceptibility to specific confusions, and
automated classification of expressions and AUs). In a dataset
file (see Supplementary Dataset S1), each stimulus can be
ordered according to each of these measures. Second, due to
the standardization of expression unfolding speed and duration
for all the stimuli, the present database allows for a fine-grained
investigation of emotion recognition as a function of expressive
intensity. We provide evidence values from automated analysis
of expressions and AUs for each frame of each video-clip. In
a dataset file (see Supplementary Dataset S2), such values are
shown for each of 31 intensity levels of each stimulus, from 0
(neutral) to 100% (full-blown emotion). Third, another novel
contribution involves the control of multiple non-expressive
perceptual factors (e.g., low-level image properties) that might
otherwise confound expression recognition differences. In a
dataset file (see Supplementary Dataset S3), each stimulus
has been quantified in terms of such perceptual factors across
each of 31 expressive intensity levels. Potential applications and
limitations will be considered in the Section “Discussion.”

MATERIALS AND METHODS

Participants
Ninety-six university undergraduates (56 females and 40
males; aged 18–30 years; M = 21.2 years) from different
courses (Psychology, Medicine, Law, Economics, and Education)
participated voluntarily for payment (5 €) or course credit,
after signing written informed consent. Four more participants
were excluded from the analyses because their mean correct
recognition rate was below 50% for three or more expressions. An
a priori power calculation using G∗Power (v. 3.1.9.2; Faul et al.,
2007) showed that 46 participants would be sufficient to detect a
medium effect size (Cohen’s d = 0.60) at α = 0.05, with power of
0.98. As this was a norming study of stimulus materials, a larger
participant sample was used to obtain stable and representative
average scores for each stimulus. The study was approved by
the Ethics Committee of University of La Laguna (protocol
CEIBA2017-0227), and was conducted in accordance with the
Declaration of Helsinki 2008.

Stimuli
The color photographs of 40 posers (20 females and 20 males)
in frontal view from the KDEF database (Lundqvist et al., 1998)
displaying six emotional facial expressions (happiness, sadness,
anger, fear, disgust, and surprise) were used. The KDEF identities
(see Supplementary Dataset S1) were the same as in a previous
norming study using photographic stimuli (Calvo and Lundqvist,
2008). For the current study, 240 dynamic video-clip versions
(1,033-ms duration) of the original KDEF photographs were
constructed. The face stimuli were morphed with FantaMorph
(Abrosoft) computer software. For each expression of each
poser, we created a 1,033-ms sequence of 31 (33.33-ms) frames
smoothly increasing expressive intensity at 30 frames per second
(fps), starting with a neutral face as the first frame (frame 0;
original KDEF), and ending with an emotional face (happy,
sad, etc.) as the final frame (frame 30; original KDEF). Video-
clips are shown as supporting information (see Supplementary
Dataset S4). A very similar or identical procedure and display
duration was used previously (Schultz and Pilz, 2009; Johnston
et al., 2013; Wingenbach et al., 2016). Each face stimulus
subtended a visual angle of 10.6◦ (height) × 8◦ (width) at a 70-
cm viewing distance (this approximates the size of a real face, i.e.,
18.5× 13.8 cm, from a 1-m distance).

Procedure
The 96 participants were presented with all 240 video-clips (40
posers × 6 expressions) in six blocks of 40 trials each, and a
short break after each block. Block order was counterbalanced,
and trial order and type of expression were randomized within
each block. The stimuli were displayed on a computer screen (12-
in TFT LED LCD with a 1,366 × 768 resolution) by means of
E-Prime 2.0 software. Participants were told that short videos
of faces with different expressions would be presented, and
were asked to indicate which expression was shown on each
trial, by pressing a key out of six, as soon and as accurately as
possible, with their dominant index finger. Between trials, the
index finger was placed at a predetermined location in the middle
of the spacebar, equidistant from all six response keys (from 4
to 9). During the instructions, the six basic expressions were
identified, as well as the location of the keys to be pressed for
each category. Twelve video-clips of two additional, non-KDEF
encoders displaying six emotional expressions served as practice
trials.

The sequence of events on each trial was as follows. After
an initial 500-ms central fixation cross on a screen, a video-clip
showed a facial expression that unfolded for 1,033 ms. Following
face offset, graphical instructions appeared on the screen
for responding: Six small boxes were arranged horizontally,
numbered from 4 to 9, with each box/number associated to
a verbal label (e.g., 4: happy; 5: sad, etc.). The assignment of
expressions to numbers was counterbalanced across participants.
For categorizing each expression, participants pressed one key
(from 4 to 9) in the upper row of a standard computer keyboard.
The selected response and reaction times (RTs; from the video-
clip offset) were recorded. There was a 1,500-ms intertrial
interval.
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Design and Measures
We used a within-subjects experimental design, with expressive
category (happiness, sadness, anger, fear, disgust, and surprise)
as a factor. As dependent variables, we measured hits, i.e.,
the probability that responses coincided with the displayed
expression (e.g., responding “happy” when the face stimulus
was intended to convey happiness), and RTs. In addition, we
identified the type of confusions, i.e., the probability that each
target (the actually displayed expression) was categorized as
each of the other five, non-target expressions (e.g., if the target
was anger on a trial, the five non-targets were happiness,
sadness, disgust, fear, and surprise). These measures, along with
those involving automated expression analysis (see below), are
provided as supplementary data for each KDEF-dyn stimulus (see
Supplementary Dataset S1).

Automated Facial Expression Analysis
In addition to the human observers’ performance measures,
we subjected the video stimuli to automated face analysis by
means of Emotient FACET software, which is assumed to detect
facial features (e.g., mouth corners) and feature groups, and
then to classify the image as belonging to a particular emotional
expression category by comparing the resulting output maps with
template images. Recently, FACET has been used in psychological
and applied research (see Dente et al., 2017). The automated
analysis provides two types of measures (see Gordon et al., 2011;
Olderbak et al., 2014): (a) expression evidence scores for each
category: joy, anger, surprise, fear, disgust, sadness, and contempt,
in addition to neutral; and (b) AUs evidence scores (for 20 AUs:
1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 28, and
43), according to FACS (Ekman et al., 2002); see also (Cohn et al.,
2007; Cohn and De la Torre, 2015). AUs are anatomically related
to the movement of specific face muscles (e.g., AU12 involves
the contraction of the zygomaticus major muscle, which draws
the angle of the mouth superiorly and posteriorly to allow for
smiling).

We obtained expression and AU evidence scores for each
of 31 frames across the 1,033-ms unfolding, for each poser
and expression (see Supplementary Dataset S2). The FACET
evidence scores quantify the odds (in decimal logarithmic
scale) of each expression or AU to be present in a given face
stimulus, and can be transformed into probabilities (p) with
the formula p = 1/(1 + 10−evidence score). An evidence score of
zero indicates chance level (0.50/0.50). Positive values indicate
greater probabilities that a given expression or AU is present, and
negative values indicate greater probabilities that an expression or
AU is unlikely to be present in the stimulus. All evidence scores
above 1 will approach the probability value of 1, and all evidence
scores below −1 will approach a 0 probability. This implies that
evidence scores (in odds ratios) are more discriminative than
probabilities to detect subtle changes, and the former are more
suitable for statistical tests because they tend to be normally
distributed. The evidence scores ranged in a continuous scale
between −12 and 12. We conducted Kolmogorov–Smirnov and
Levene’s tests to exam the assumptions of ANOVA regarding
normality and homoscedasticity, respectively. Results revealed

that most residuals of the evidence scores for expressions and AUs
were normally distributed and homoscedastic (for multivariate
ANOVA with the evidence scores used as dependent variables
and expression category as a fixed factor; see Supplementary
Dataset S2).

Low-Level Stimulus Image Properties
To examine potential physical and perceptual differences among
expression categories across the 1,033-ms unfolding display, we
computed (with Matlab 7.0, The Mathworks) the following low-
level image statistics of each neutral face and the respective
emotional faces for each of 31 frames, at consecutive expressive
intensity levels, from 0% intensity (i.e., neutral face) to full-
blown emotion (i.e., 100% intensity), in 3.33% steps: mean and
variance of luminance, RMS or root mean square contrast,
skewness, kurtosis, SNR or signal-to-noise ratio, and entropy.
Each low-level property was analyzed by means of a (6:
Expression Stimulus) × 31 (Intensity Levels) ANOVA. All
the measures were sensitive to the effects of intensity, all
Fs(30,7020) ≥ 38.44, p < 0.0001, η2

p ≥ 0.14), but, importantly,
the main effect of expression was never significant (all Fs < 1,
except for skewness: F(5,234) = 1.51, p = 0.19, ns; see
Supplementary Dataset S3). Accordingly, the face stimuli of the
different expressions did not significantly differ in such physical
properties. This rules out purely perceptual factors as responsible
for the differences observed in categorization performance by
human observers or automated facial expression classification
(see below).

RESULTS

We wanted to relate human observers’ performance and
automated facial expression analysis, which had to be conducted
for each stimulus. Further, the study aimed to obtain and provide
other researchers with validation measures for each stimulus (i.e.,
KDEF model identity). Accordingly, the statistical analyses were
performed on the stimuli as the error term. This means that
the recognition performance scores of the 96 participants were
averaged for each of the 240 video-clip stimuli, which served as
the units of analysis, with an N = 40 for each expression category.
All the multiple post hoc comparisons in the following analyses
involved Bonferroni corrections (with a p < 0.05 threshold).

Analyses of Recognition Performance
and Confusions by Human Observers
For response accuracy, a one-way (6: Expression) ANOVA
yielded significant effects, F(5,234) = 32.07, p < 0.0001, η2

p = 0.41.
Post hoc contrasts revealed significantly better recognition of
happiness, surprise, and anger, than sadness and disgust, which
were recognized better than fear (see Table 1). The correct
response reaction times, F(5,234) = 69.91, p < 0.0001, η2

p = 0.60,
were faster for happiness than for any other expression, followed
by surprise and anger (which did not differ from each other), and
by disgust and sadness (which did not differ from each other),
with fear being recognized more slowly than the other categories.
Pairwise (Pearson) correlations between response accuracy and
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TABLE 1 | Mean proportion (%) of hits and confusions in human observers’ responses, and reaction times (for hits only) for each target (stimulus) expression.

Expression response

Expression stimulus Happiness Surprise Anger Sadness Disgust Fear

Happiness 98.5a 1.0b 0.0b 0.0b 0.3b 0.2b

Surprise 2.8b 93.7a 0.1c 0.0c 0.2c 3.2b

Anger 0.2c 0.8bc 91.7a 1.3bc 3.6b 2.4b

Sadness 0.5c 0.7c 1.8c 80.7a 5.7b 10.6b

Disgust 0.1d 0.5d 13.4b 4.7bc 77.8a 3.5c

Fear 0.8d 18.5b 1.1d 2.5d 8.5c 68.6a

Hits 98.5a 93.7a 91.7a 80.7b 77.8b 68.6c

Hit RTs 868a 1,061b 1,140b 1,253c 1,229c 1,431d

Within each expression stimulus category (horizontally), scores with different letters across expression response (i.e., on the same line) are significantly different in post hoc
multiple contrasts (p < 0.05, Bonferroni corrected); expressions sharing a letter are equivalent. Boldface for hits in columns.

TABLE 2 | Mean raw evidence scores (odds ratios) of each expression (response) for each target (stimulus) expression.

Expression response

Expression stimulus Happiness Surprise Anger Sadness Disgust Fear Neutral

Happiness 6.4a
−8.6e

−7.7d
−9.2e

−5.4c
−3.9b

−11.9f

Surprise −5.6d 3.5a
−3.9c

−6.1d
−4.5c 0.8b

−4.8cd

Anger −6.3e
−4.8d 1.7a

−2.8c
−0.4b

−2.8c
−2.6bc

Sadness −4.6e
−4.1e

−2.3d 1.7a
−1.3c

−0.2b
−2.2cd

Disgust −5.4d
−8.2e

−1.6b
−5.7d 4.2a

−3.8c
−8.2e

Fear −4.0d
−1.3b

−2.9cd
−3.1cd

−2.1bc 1.6a
−4.4de

Target 6.4a 3.5b 1.7c 1.7c 4.2b 1.6c

Automated analysis computed by Emotient FACET software. Within each expression stimulus category (horizontally), scores with different letters across expression
response (i.e., on the same line) are significantly different in post hoc multiple contrasts (p < 0.05, Bonferroni corrected); expressions sharing a letter are equivalent.
Boldface for correct responses to target (stimulus) expressions. Target: correct classification of each stimulus.

reaction times for all the expressions showed that reaction times
decreased as accuracy increased (Happiness: r = −0.67; Surprise:
r = −0.72; Anger: r = −0.78; Sadness: r = −0.64; Disgust:
r =−0.81; Fear: r =−0.71; all ps < 0.0001; N = 40).

For the analysis of confusions, a 6 (Expression Stimulus) × 6
(Expression Response) ANOVA was conducted. Interactive
effects, F(25,1170) = 836.53, p < 0.0001, η2

p = 0.95, were
decomposed by means of separate one-way (6: Expression
Response) ANOVAs for each expression stimulus. See the mean
scores and multiple contrasts in Table 1. Facial happiness,
F(5,195) = 11922.15, p < 0.0001, η2

p = 1, was very unlikely
to be confused. Surprise, F(5,195) = 2952.68, p < 0.0001,
η2

p = 0.99, was slightly confused with fear and happiness. Anger,
F(5,195) = 1625.02, p < 0.0001, η2

p = 0.98, was slightly confused
with disgust and fear. Sadness, F(5,195) = 427.46, p < 0.0001,
η2

p = 0.92, was confused with fear and disgust more than
with other expressions. Disgust, F(5,195) = 228.31, p < 0.0001,
η2

p = 0.85, was confused with anger and sadness, followed by
fear. Finally, fear, F(5,195) = 315.88, p < 0.0001, η2

p = 0.89, was
confused with surprise, followed by disgust.

Automated Assessment of Expressions
With FACET
The evidence scores for each expression were subjected
to a 6 (Expression Stimulus) × 7 (Expression Response,

i.e., the six basic emotions plus neutral) ANOVA. Main effects
of expression stimulus, F(5,234) = 73.25, p < 0.0001, η2

p
= 0.61, and response, F(6,1404) = 142.17, p < 0.0001,
η2

p = 0.38, and an interaction, F(30,1404) = 152.43, p < 0.0001,
η2

p = 0.77, emerged. To decompose the interaction, separate
one-way (7: Expression Response) ANOVAs were conducted
for each expression stimulus. All the expressions were correctly
classified (e.g., facial happiness was classified as joy), with
target responses being significantly higher (after Bonferroni
corrections) than alternative responses (e.g., happiness classified
as surprise, etc.), which were assigned negative scores: Facial
happiness, F(6,234) = 636.60, p < 0.0001, η2

p = 0.94; surprise,
F(6,234) = 150.16, p < 0.0001, η2

p = 0.79; anger, F(6,234) = 66.31,
p < 0.0001, η2

p = 0.63; sadness, F(6,234) = 61.98, p < 0.0001,
η2

p = 0.61; disgust, F(6,234) = 196.70, p < 0.0001, η2
p = 0.86;

and fear, F(6,234) = 31.44, p < 0.0001, η2
p = 0.45. The

interaction reflected the fact that the correct response scores
were higher for happy expressions, followed by disgust and
surprise (which did not differ from each other), followed
by anger, sadness, and fear (which did not differ from one
another), as indicated by a one-way (6: Expression Stimulus)
ANOVA, F(5,234) = 64.34, p < 0.0001, η2

p = 0.58, and multiple
post hoc comparisons. See the mean scores and contrasts in
Table 2.
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Automated Assessment of Expressive
Intensity With FACET
To examine expression classification by FACET as a function of
expressive intensity, we conducted a 6 (Stimulus Expression)× 31
(Intensity Levels: 0% or neutral, 3.3%, 6.7%, etc., and 100% or
full-blown emotion) ANOVA on the evidence scores. Effects
of expression, F(5,7254) = 420.79, p < 0.0001, η2

p = 0.23,
intensity, F(30,7254) = 593.43, p < 0.0001, η2

p = 0.71, and an
interaction, F(150,7254) = 23.66, p < 0.0001, η2

p = 0.33, emerged.
Separate one-way (Intensity: 31) ANOVAs were performed for
each expression to determine the intensity threshold, i.e., when
significant evidence of each emotion started relative to the
neutral face baseline. Facial happiness, F(30,1209) = 232.76,
p < 0.0001, η2

p = 0.85, started to be correctly classified as such at
13.3% intensity (p = 0.003, after Bonferroni corrections); disgust,
F(30,1209) = 146.76, p < 0.0001, η2

p = 0.78, at 20.0% intensity
(p = 0.002); surprise, F(30,1209) = 109.37, p < 0.0001, η2

p = 0.73,
at 23.3% (p = 0.012); anger, F(30,1209) = 43.38, p < 0.0001,
η2

p = 0.52, at 26.7% (p = 0.02); fear, F(30,1209) = 52.47, p < 0.0001,
η2

p = 0.57, at 26.7% (p = 0.039); and sadness, F(30,1209) = 44.45,
p < 0.0001, η2

p = 0.53, at 36.7% intensity (p = 0.007). Figure 1
shows the pattern of automated expression classification as a
function of expressive intensity.

Automated Assessment of Action Units
(AUs) With FACET
The evidence scores (at 100% intensity of expression) of AUs
were subjected to a 6 (Expression Stimulus)× 20 (AUs) ANOVA.
Effects of expression, F(5,234) = 30.69, p < 0.0001, η2

p = 0.40, AUs,
F(19,4446) = 433.60, p < 0.0001, η2

p = 0.65, and an interaction,
F(95,4446) = 100.63, p < 0.0001, η2

p = 0.68, emerged. For all

the AUs, there were significant differences across expressions, all
Fs(5,234)≥ 23.64, p < 0.0001, η2

p ≥ 0.34. Table 3 shows the 100%
intensity AU scores.

To interpret the interaction and determine the association
of specific AUs to particular expressions, we used two
complementary approaches. First, we examined whether, for each
AU and emotional expression, the scores were positive and above
0 (thus revealing that an AU was in fact present), by means of
t-tests for dependent samples. Significant differences appeared
for all the AUs in boldface in Table 3, all ts(39)≥ 5.53, p < 0.0001,
d ≥ 0.87. Second, for each AU, we examined whether scores were
higher for each emotional expression (at any intensity level from
3.33 to 100%) relative to those for the neutral face, in one-way
(31: Intensity level) ANOVAs, followed by Bonferroni (p < 0.05)
corrections. Significant differences appeared for all the AUs in
boldface in Table 3, Fs(30,1170) ≥ 59.62, p < 0.0001, η2

p = 0.61.
Figure 2 shows the variations in the selected AUs (those that
fulfilled both criteria, i.e., significantly above 0 and above neutral
faces) across expressive intensities. In sum, facial happiness or joy
was significantly characterized by AUs 6, 12, and 25; surprise, by
AUs 1, 2, 5, 25, and 26; anger, by AUs 4 and 7; sadness, by AUs 1,
4, and 15; disgust, by AUs 4, 6, 7, 9, and 10; and fear, by AUs 1, 5,
and 25.

Relationships Between Human
Observers’ Performance (Responses and
RTs) and Automated Assessment With
FACET (Evidence Scores of Expressions
and AUs)
Intra-class correlation (ICC, 2) analyses revealed high
classification consistency between the automated evidence

FIGURE 1 | Automated assessment of expressive intensity. Mean automated (FACET) difference (emotional minus neutral) evidence scores of each type of
expression (response) across intensity levels for each expression stimulus. Above the dotted line: significantly different from the 0% (neutral) baseline (happy: 13.3%
of intensity; disgust: 20.0%; surprise: 23.3%; anger and fear: 26.7%; sadness: 36.7%).
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TABLE 3 | Mean raw evidence scores (odds ratios) of action units (AUs) for each expression (100% expressive intensity).

Expression response

Action Units Happiness Surprise Anger Sadness Disgust Fear

AU1 Inner brow raiser −1.11 1.51 −1.76 1.38 −2.23 1.58

AU2 Outer brow raiser −0.71 1.93 −1.75 −0.15 −1.60 0.71

AU4 Brow lowerer −1.65 −1.08 1.86 1.55 1.70 0.92

AU5 Upper lid raiser −1.41 1.99 0.31 −0.19 −0.97 1.26

AU6 Cheek raiser 2.88 −2.32 −0.24 −0.28 1.02 −0.72

AU7 Lid tightener 0.43 −1.10 0.89 0.09 1.28 −0.15

AU9 Nose wrinkle −2.49 −5.22 0.19 −2.45 3.48 −3.25

AU10 Upper lip raiser −0.40 −1.79 0.43 −0.17 3.55 −0.34

AU12 Lip corner puller 4.06 −1.60 −1.80 −1.04 −1.29 −0.76

AU14 Dimpler −1.73 −2.62 −1.94 −1.37 −3.58 −1.88

AU15 Lip corner depressor −1.98 −1.87 −0.99 0.98 0.16 −1.22

AU17 Chin raiser −1.79 −2.53 −0.31 0.25 0.49 −2.02

AU18 Lip puckerer −9.79 −3.04 −1.69 −2.08 −4.97 −3.83

AU20 Lip stretcher −0.23 −0.74 −1.48 −0.08 −0.07 0.37

AU23 Lip tightener −1.58 −1.13 −0.23 −0.80 −0.89 −1.09

AU24 Lip pressor −2.89 −3.38 −1.07 −0.97 −2.54 −2.77

AU25 Lips part 2.07 2.58 −1.41 −1.31 0.94 1.48

AU26 Jaw drop −0.05 2.27 −2.44 −1.76 −1.82 0.02

AU28 Lip suck −3.42 −4.84 −3.80 −2.99 −6.07 −3.54

AU43 Eyes closed −3.45 −0.96 −1.20 −1.47 −0.99 −1.33

Automated analysis computed by Emotient FACET Software. Boldface: AU evidence scores for emotional faces significantly higher than those for neutral faces and
above 0. They represent the AUs specifically associated with each expression.

scores and hits from human raters, separately for each emotional
category (N = 40; Happiness: ICC = 0.93; Surprise: ICC = 0.94;
Anger: ICC = 0.89; Sadness: ICC = 0.95; Disgust: ICC = 0.76;
Fear: ICC = 0.65; all ps < 0.001; 95% CI). ICCs were calculated as
consistency between the proportion of hits for each KDEF model
(averaged across all 96 human observers) and the evidence scores
recalculated into probabilities as p = 1/(1 + 10−evidence score).
Also, RTs for observers’ hits were negatively related to automated
evidence of expressions (Happiness: r = −0.45; Surprise:
r = −0.51; Anger: r = −0.40; Sadness: r = −0.41; Disgust:
r =−0.58; Fear: r =−0.47; all ps ≤ 0.01; N = 40).

In addition, there were positive correlations between specific
AUs and the probability of human categorization responses. Most
of the significantly related (all ps < 0.0001; N = 240) AUs were
those that typically characterize each expression: The probability
that observers categorized expressions (a) as happy was related
to AU6 (r = 0.67) and AU12 (r = 0.90); (b) as surprised, to AU1
(r = 0.45), AU2 (r = 0.73), AU5 (r = 0.68), AU25 (r = 0.45), and
AU26 (r = 0.77); (c) as angry, to AU4 (r = 0.41), AU7 (r = 0.37),
and AU23 (r = 0.48); (d) as sad, to AU1 (r = 0.36), AU4 (r = 0.34),
AU15 (r = 0.63), and AU24 (r = 0.44); (e) as disgusted, to AU4
(r = 0.36), AU7 (r = 0.50), AU9 (r = 0.73), and AU10 (r = 0.77);
and (f) as fearful, to AU1 (r = 0.42) and AU5 (r = 0.34).

DISCUSSION

We aimed to provide researchers of emotional facial expression
processing with a set of useful and valid dynamic stimuli. To

this end, with agreed time parameters (i.e., unfolding speed to
expressive apex within 1 s; Schultz and Pilz, 2009; Hoffmann et al.,
2010; Johnston et al., 2013; Wingenbach et al., 2016), we animated
static face stimuli of the KDEF database (Lundqvist et al., 1998).
The current study examined the resulting KDEF-dyn video-clip
stimuli from two complementary approaches: human observer
judgments and automated assessment of facial expression.
A variety of measures (recognition accuracy, efficiency, and
confusions, as well as automated classification of expressions
and detection of AUs as a function of intensity, in addition
to low-level image properties) were obtained, and are shown
on a stimulus level as supplementary data. They will supply
researchers with an instrument to select the stimuli as a function
of multiple criteria.

Recognition Patterns of Static and
Dynamic Expressions
Human observers correctly recognized all the expressions (as
they were intended) well-above chance level (M = 85.2%). Happy
faces were recognized better and faster—and fearful faces, less
accurately and more slowly—than others, with confusions of fear
as surprise, disgust as anger, and sadness as fear. The patterns
of recognition accuracy, processing efficiency, and confusions
across dynamic expressions converge with those found in prior
research for static expressions, using different stimulus databases.
Regarding recognition accuracy, Nelson and Russell reviewed 38
sets of data from 17 studies (Nelson and Russell, 2013): Scores
were highest for facial happiness (89%), followed by surprise
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FIGURE 2 | Distribution of AU evidence scores across levels of expressive intensity. For each expression, AUs were selected if scores were higher than for the
neutral face (NE, or 0% expression intensity) and were positive and above the 0 AU activation baseline. AU1: inner brow raiser; AU2: outer brow raiser; AU4: brow
lowerer; AU5: upper lid raiser; AU6: cheek raiser; AU7: lid tightener; AU9: nose wrinkle; AU10: upper lip raiser; AU12: lip corner puller; AU15: lip corner depressor;
AU25: lips part; AU26: jaw drop. (A) Happiness; (B) Surprise; (C) Anger; (D) Sadness; (E) Disgust; (F) Fear.

(83%), which were higher than for sadness and anger (71 and
68%, respectively), followed by disgust and fear (65 and 59%,
respectively). This coincides with our own relative differences
(see also Tottenham et al., 2009; Recio et al., 2014; Calvo et al.,
2016). Such a consistency extends also to processing efficiency, as
happy faces are typically recognized faster, followed by surprise,
while fear is recognized most slowly (Calder et al., 2000; Elfenbein
and Ambady, 2003; Palermo and Coltheart, 2004; Calvo and
Nummenmaa, 2009). The pattern of confusions is also consistent,
as they have been found to occur systematically between disgust
and anger, and between surprise and fear, and to a lesser extent

between sadness and fear (Palermo and Coltheart, 2004; Calvo
and Lundqvist, 2008; Tottenham et al., 2009; Recio et al., 2013).

Further validation comes from prior research using dynamic
expression stimuli. First, three studies included all six basic
expressions in dynamic morphing format from three different
databases. Calvo et al. (2016) presented real faces (24 models of
the KDEF-dyn database) for 1 s. Recio et al. (2014) presented real
faces (from the RaFD; Langner et al., 2010) for 600 ms. Recio
et al. (2013) displayed computer-generated faces (FACSGen 2.0;
Krumhuber et al., 2012) for 900 ms. The pattern of recognition
accuracy across expressions was similar in all three studies, with
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happy faces being identified most accurately (also including
higher A’ sensitivity; Calvo et al., 2016), and disgusted and
fearful faces, least accurately (and lower A’ sensitivity; Calvo
et al., 2016). In addition, in all three studies, fear was likely to
be confused with surprise, disgust with anger, and there was
some confusion between sadness and fear. Second, regarding the
dynamic stimulus sets based on on-line video recordings (e.g.,
van der Schalk et al., 2011; Banziger et al., 2012; Kaulard et al.,
2012; Zhang et al., 2014; O’Reilly et al., 2016; Wingenbach et al.,
2016; see the 22 databases reviewed by Krumhuber et al., 2017),
it is difficult to make comparisons because some studies did not
measure recognition performance (accuracy, RTs, or confusions),
and due to considerable variations in number of expressive
categories and display times (among many other methodological
differences). The study conducted by Wingenbach et al. (2016)
was methodologically more similar to our own. Their relative
recognition accuracies and the pattern of RTs across the six
basic expressions were comparable to those in the current
study. Altogether, this empirical consistency validates the current
database.

Automated Assessment vs. Human
Observers
Another major source of validation for the current database
involves the use of automated facial expression analysis.
First, the automated classification of expressions showed
discrimination specificity, with the evidence of each expression
being significantly greater for the corresponding stimulus
category than for the others. Nevertheless, some expressions,
especially, happiness, and also disgust and surprise, were
classified better than sadness, anger, and fear (see Table 2),
which is in total agreement with results obtained with other
automated computation algorithms (Lucey et al., 2010). Second,
AUs generally discriminated between expressive categories, and
this was in accordance with FACS proposals (Ekman et al., 2002;
Olderbak et al., 2014). Some AUs characterized expressions more
specifically or strongly than others (see Table 3), e.g., AU12 for
happiness, AU25 for surprise, AUs 9 and 10 for disgust, AU1 for
fear, and AU4 for anger and sadness (the AU4 combination with
other AUs allowed for a clear discrimination between these two
expressions; see Table 2). A related pattern has been obtained
with different automated AU detection systems (Lucey et al.,
2010; Mavadati et al., 2013; Zhang et al., 2014). Third, automated
expression classification and also AU evidence scores increased
significantly across 3.33% expressive intensity steps between a
neutral and an emotional face (see Figures 1, 2). The steepness
of such a progressive increase as a function of intensity varied
for different expressions and AUs. This approach and results
regarding intensity represent a novel contribution and further
validate the current video-clip stimuli.

Fourth, importantly, significant correlations emerged between
human observers’ performance and automated evidence of
expressions (large effect sizes: Cohen’s ds ≥ 1.71) and AUs
(medium to large effects: ds ≥ 0.72). This has implications
for expression recognition theories concerning the type of
information that is processed and the cognitive processes

involved. Computational models such as EMPATH (Dailey
et al., 2002, 2010) and support vector machine (SVM) based
techniques (Susskind et al., 2007)—and, presumably, FACET—
simulate face processing and expression recognition in humans.
In these models, facial expressions are computed by “emotionless
machines” on purely perceptual grounds, i.e., physical image
properties (the morphological structure of facial configurations
and the visual saliency of distinctive facial cues), in the absence
of affective processing. Accordingly, the fact that the automated
classifications of expressions converged with human observers’
judgments in the current study suggests that human expression
recognition also relies to a significant extent on the perceptual
(devoid of affect) analysis of facial features. Nevertheless, first,
while this may be true for photographs or videos of faces, the
role of human affective processing is probably greater in actual
face-to-face social encounters, when emotional significance
becomes relevant for adaptive purposes. Second, it is likely that
the morphological facial features of expressions have become
associated (through practice) with their affective significance, and
thus both would be processed in tandem, therefore explaining the
observed correlations.

Applications and Limitations
The KDEF-dyn database aims to extend the research possibilities
of dynamic facial expression stimuli. First, regarding
experimental control, all the stimuli are equated in multiple
image properties that are non-specific of expression—but
can act as confounds—(luminance, signal-to-noise ratio, size,
orientation, etc.), in addition to standardization of dynamic
properties (unfolding speed and duration). Such controls will
be particularly useful for neurophysiological and eyetracking
research, where the dependent measures are especially sensitive
to physical stimulus factors; and also useful for paradigms in
which the stimuli must be presented briefly, where display
duration needs to be strictly comparable for the different stimuli.
A second benefit is related to the role of expressive intensity.
Instead of considering only the apex, we have established the
assessment of expressions and AUs at fine-grained intensities.
This is important, as intensity is often critical to interpret the
meaning of expressions. By knowing the evidence for each
expression and AU at each intensity level, and the time-intensity
correspondence in the video-clips (as shown in Supplementary
Dataset S3), researchers can easily manipulate the display time
of the stimuli to investigate the desired intensity (e.g., by cutting,
masking, or stopping each video-clip at the respective time
point). This approach will be useful for the investigation of visual
processing, particularly for studies of expression discrimination
thresholds. A third promising application is concerned with
the use of these stimuli in the investigation of cognitive biases
(attentional and interpretative) in psychopathology. For example,
it has been shown that individuals with clinical levels of social
anxiety are especially prone to detect negatively valenced
dynamic expressions at low intensities (Gutiérrez-García and
Calvo, 2016, 2017; Gutiérrez-García et al., 2018). A reason
for the usefulness of this application to psychopathology
research is that dynamic information improves identification of
facial affect, particularly for lower intensity and subtle stimuli
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(Krumhuber et al., 2013), which would increase sensitivity for
individuals that are hypervigilant to threat and incongruities in
facial expressions.

Researchers should, nonetheless, be aware of potential
limitations. First, although standardization of unfolding speed
is beneficial for experimental control, it can reduce the natural
speed variance across expressions. For example, we averaged the
1-s unfolding speed from neutral baseline to emotional apex
for all the expressions (see Schultz and Pilz, 2009; Johnston
et al., 2013; Wingenbach et al., 2016). However, facial surprise is
considered as most natural when it unfolds at a fast pace while
sadness is judged as more realistic when the facial expression
changes slowly (Sato and Yoshikawa, 2004; Adamaszek et al.,
2015). To remedy this potential limitation, it is possible to
slow down or speed up the video-clips, by means of video-
editing software. Second, we used posed instead of spontaneous
expressions. The majority of extant dynamic stimulus sets, in fact,
include posed expressions, either in response to instructions to
perform facial actions or as the enactment of emotional scenarios
(van der Schalk et al., 2011; Banziger et al., 2012; Kaulard et al.,
2012; O’Reilly et al., 2016; Wingenbach et al., 2016), although
some have included spontaneous expressions (Mavadati et al.,
2013; Zhang et al., 2014). Posed expressions may lose naturalness
and their recognition rates may be inflated, although the former
avoid the ambiguity of spontaneous expressions. Third, we used
morphed expressions. Morphing creates linear movement where
all the facial components change at the same time and speed,
whereas natural expressions appear to change in a non-linear
manner. However, some studies indicate that natural expressions
look smooth, uniform, and ballistic (Weiss et al., 1987; Hess et al.,
1989), thus actually sharing properties with morphed dynamic
expressions. Further, in the current study, automated assessment
revealed specificity and sensitivity to expressions and also to
AUs in accordance with FACS proposals. This suggests that the
possible reduction of naturalness was not critical (see Cosker
et al., 2010, 2015).

CONCLUSION

We present a set of dynamic facial expressions (KDEF-dyn)
based on a widely used database of static expressions (KDEF).
The new stimuli have been validated by means of several
measures from two approaches: expression categorization by
human observers and automated analysis of facial expressions
and AUs with computer software. Results show good convergence
with prior research using static and dynamic expression stimuli.
Although not devoid of limitations, this convergence reinforces
the validation of the current database, while offering additional

advantages: (a) the use of automated facial expression and
AU analysis, with significant correlations between human and
automated performance; (b) the control of perceptual properties
(e.g., size and multiple low-level image statistics) and stimulus
dynamic properties (e.g., duration and unfolding speed); and (c)
the systematic and fine-grained gradation of expressive intensities
of an otherwise relatively large sample of encoders. This will
be useful for behavioral, computational, and neurophysiological
studies investigating facial expression processing.
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